初二上数学教案6篇
教案可以根据学生的反馈和表现进行调整和改进,教案的编写可以有助于教师提前预见可能出现的教学困难并采取措施应对,以下是85报告网小编精心为您推荐的初二上数学教案6篇,供大家参考。
初二上数学教案篇1
1。教材分析
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。
2。教法建议
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。
一、素质教育目标
(一)知识教学点
1。使学生掌握四边形的有关概念及四边形的内角和外角和定理。
2。了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点
1。通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2。通过推导四边形内角和定理,对学生渗透化归思想。
3。会根据比较简单的条件画出指定的四边形。
4。讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、重点难点疑点及解决办法
1。教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2。教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3。疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具准备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第一课时
七、教学步骤
【复习引入】
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这??
章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。
【引入新课】
用投影仪打出课前画好的教材中p119的图。
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。
【讲解新课】
1。四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形。
(2)要与三角形类比。
(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点 。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。
(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。
(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。
2。四边形内角和定理
教师问:
(1)在图4—3中对角线ac把四边形abcd分成几个三角形?
(2)在图4—6中两条对角线ac和bd把四边形分成几个三角形?
(3)若在四边形abcd如图4—7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形。
我们知道,三角形内角和等于180,那么四边形的内角和就等于:
①2180=360如图4
②4180—360=360如图4—7。
例1 已知:如图48,直线 于b、 于c。
求证:(1) (2) 。
本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。
【总结、扩展】
1。四边形的有关概念。
2。四边形对角线的作用。
3。四边形内角和定理。
八、布置作业
教材p128中1(1)、2、 3。
九、板书设计
四边形(一)
四边形有关概念
四边形内角和
例1
十、随堂练习
教材p122中1、2、3。
初二上数学教案篇2
一、学生起点分析
八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.
二、教学任务分析
?一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.
为此本节课的教学目标是:
1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.
4.理解一次函数的代数表达式与图象之间的一一对应关系.
教学重点是:
初步了解作函数图象的一般步骤:列表、描点、连线.
教学难点是:
理解一次函数的代数表达式与图象之间的一一对应关系.
三、教学过程设计
本节课设计了七个教学环节:
第一环节:创设情境引入课题;
第二环节:画一次函数的图象;
第三环节:动手操作,深化探索;
第四环节:巩固练习,深化理解;
第五环节:课时小结;
第六环节:拓展探究;
第七环节:作业布置.
第一环节:创设情境引入课题
内容:
一天,小明以80米/分的速度去上学,请问小明离家的距离s(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? s=80t(t≥0)下面的图象能表示上面问题中的s与t的关系吗?
我们说,上面的图象是函数s=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.
效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.
第二环节:画正比例函数的图象
内容:首先我们来学习什么是函数的图象?
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).
例1请作出正比例函数y=2x的图象.
第三环节:动手操作,深化探索
内容:做一做
(1)作出正比例函数y= 3x的图象.
(2)在所作的`图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.
请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.
(1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?
(2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?
(3)正比例函数y=kx的图象有什么特点?
明晰
由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.
议一议
既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?
因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.
4.3一次函数的图象:同步测试
14若直线经过第一.二.四象限,则k.b的取值范围是( ).
a.k>0,b>0 b.k>0,b
c.k0 d. k
2.已知一次函数y=3-2x
(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;
(2)从图像看,y随着x的增大而增大,还是随x的增大而减小?
(3)x取何值时,y>0?
3.已知一次函数y=-2x+4
(1)画出函数的图象.
(2)求图象与x轴、y轴的交点a、b的坐标.
(3)求a、b两点间的距离.
(4)求△aob的面积.
(5)利用图象求当x为何值时,y≥0.
《函数的图象》课后练习
1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()
a.y=1.5(x+12)(0≤x≤10)
b.y= 1.5x+12(0≤x≤10)
c.y=1.5x+10(x≥0)
d.y=1.5(x-12)(0≤x≤10)
初二上数学教案篇3
初二上册数学知识点总结:等腰三角形
一、等腰三角形的性质:
1、等腰三角形两腰相等.
2、等腰三角形两底角相等(等边对等角)。
3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.
4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。
5、等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).
6.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形.
②三个角都相等的三角形是等边三角形.
③有一个角是60°的等腰三角形是等边三角形.
初二上数学教案篇4
教学目标:
知识与技能
1、掌握直角三角形的判别条件,并能进行简单应用;
2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型、
3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、
情感态度与价值观
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识、
教学重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、
教学难点
会辨析哪些问题应用哪个结论、
课前准备
标有单位长度的细绳、三角板、量角器、题篇
教学过程:
复习引入:
请学生复述勾股定理;使用勾股定理的前提条件是什么?
已知△abc的两边ab=5,ac=12,则bc=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法、
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
1、如何来判断?(用直角三角板检验)
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
就是说,如果三角形的三边为 , , ,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
2、继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:
5,12,13; 6, 8, 10; 8,15,17、
(1)这三组数都满足a2 +b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
3、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形、
满足a2 +b2=c2的三个正整数,称为勾股数、
4、例1 一个零件的形状如左图所示,按规定这个零件中 ∠a和∠dbc都应为直角、工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
随堂练习:
1、下列几组数能否作为直角三角形的三边长?说说你的理由、
⑴9,12,15; ⑵15,36,39;
⑶12,35,36; ⑷12,18,22、
2、已知abc中bc=41, ac=40, ab=9, 则此三角形为_______三角形, ______是角、
3、四边形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求这个四边形的面积、
4、习题1、3
课堂小结:
1、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形、
2、满足a2 +b2=c2的三个正整数,称为勾股数、勾股数扩大相同倍数后,仍为勾股数、
初二上数学教案篇5
一、班级情况分析:
本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。
一(7)班有学生38人,上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。
两班的整体成绩均不够理想。
二、教材分析:
本套教材切合《标准》的课程目标,有以下特点:
1.为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。
2.向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。
3.为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。
4.展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。
5.满足不同学生发展的需求。
三、教学目标及要求:
第一章:
1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
3.了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。
4.会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1.经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。
3.经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。
4.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。
第三章:
1.能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。
2.了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。
3.通过实例,体验收集、整理、描述和分析数据的过程。
4.能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。
第四章:
1.经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。
2.体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的'过程,体会概率是描述不确定现象的数学模型。
3.能设计符合要求的简单概率模型。
第五章:
1.通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。
2.在探索图形性质的过程中,发展推理能力和有条理的表达能力。
3.进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。
4.了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。
5.在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。
第六章:
1.经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。
2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。
3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。
4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。
第七章:
1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。
2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
3.探索并了解基本图形的轴对称性及其相关性质。
4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。
5.欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。
四、教学改革的设想(教学具体措施)
充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:
1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。
2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。
3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。
4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。
5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。
6、开展“一帮一”活动,实行以优带差点的帮助方法,多利用课余时间加强辅导,从基础知识补起,力求使学生一课一得,力求提高优秀率和及格率。
7.课前充分备好课,在课堂教学中特别要体现出培扶,分层次教育。
8.重视学生学习兴趣的培养,激发学生学习数学的内驱力。
9.大胆地深度尝试新的教学方法,要因地制宜,因材施教。
10.重视基础知识过关和单元测试过关工作,及时进行单元总结,做好平时的查漏补缺工作,不遗漏知识盲点。
11.注重对作业、练习纸、练习册、测验卷的及时批改,并尽量做到全批全改,及时反馈信息。
12.多用多媒体教学,使数学生动化。
13.多用实物教学,使数学形象化。
14.实行课课清,日日清,周周清。
15.加强课堂管理,严把课堂质量关,提高课堂效率。
16.抓好学生的作业上交完成情况。
17.加强与学生的交流,做好学生的思想教育与培优辅差工作。
五、拟定本学期教学目标
六、拟定本学期培优扶养计划。
培扶措施
对临界优秀生
在理解题、思维训练题给予方法指导,并要加强书面的表达能力。做到思路清晰,格式标准。基础训练题的过关检测,对每次测试的成绩给予个别指导,多用激励教育。
对临界及格生:
首先加强基础知识的培训,尤其要在选择题、填空题多下功夫。在课堂上、课后对他们多加注意,及时纠正错误。抓好每次单元过关测试工作,抓好时机,多表扬,树立信心。
七、教学内容及课时安排(略)
八、作业格式及批改要求:
作业格式:
1.作业本左边都画上竖线,留约0.5cm空白。
2.每次作业都要在第一行注明日期和作业的出处,如p42,1即课本42面第1题。
3。每题作业之间要留一行隔开,每次作业之间至少留一行空白,再写下一次作业。
批改要求:
1.每题作业都要有批改的痕迹,错的打“×”,对的打“√”,书写要清晰,明确看出错对。
2.每次作业必须全批全改,要体现出层次。作业簿要打分数+等级(等级分a、b、c三等,代表学生的书写成绩。)
3、每次的作业要及时更正,更正时统一在每次的作业后面用红笔更正。
初二上数学教案篇6
教学目标
1.会解简易方程,并能用简易方程解简单的应用题;
2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;
3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。
教学建议
一、教学重点、难点
重点:简易方程的解法;
难点:根据实际问题中的数量关系正确地列出方程并求解。
二、重点、难点分析
解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。
判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。
列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。
三、知识结构
导入方程的概念解简易方程利用简易方程解应用题。
四、教法建议
(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。
(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。
(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。
(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。
五、列简易方程解应用题
列简易方程解应用题的一般步骤
(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.
(2)找出能够表示应用题全部含义的一个相等关系.
(3)根据这个相等关系列出需要的代数式,从而列出方程.
(4)解这个方程,求出未知数的值.
(5)写出答案(包括单位名称).
概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.