整数的和的教学反思7篇
想要形成自己的教学特色,提高自身的教学实力,就要认真写好教学反思,实用的教学反思是可以帮助我们及时发现自己教学过程中的不足的,以下是85报告网小编精心为您推荐的整数的和的教学反思7篇,供大家参考。
整数的和的教学反思篇1
除数是整数的小数除法是第三单元例2例3的新授课,第三单元在五年级教材中所占比重比较大,小数除法整体对学生来说也有难度,但还好是在学生学习了整数除法的基础上来加深的,而王老师这节课所讲条理清晰,算理分析得也很透彻。
上课伊始,王老师以复习四年级所学的小数的性质直接导入,这个来说对学生不难,小数的末尾填上0或去掉0,小数的大小不变。继而大屏幕出現了一组口算题,以开火车的方式要求学生口算结果。由这样一个环节,我发现大部分学生的口算的能力还是比较好的,联想到自己的学生在口算方面还比较欠缺,需要我多投入些精力在此方面提高。复习环节之三就是指名学生上黑板上笔算上节课的旧知。此环节有利于下面更好地吸收新知识,并且随时提醒学生注意:商的小数点要和被除数的小数点对齐。继而引入例题:王鹏的爷爷计划16天慢跑28km,平均每天慢跑多少千米?李老师让学生齐读例题,并要求学生自己先列式计算,写完的学生把自己的想法和同学交流一下,看你遇到了什么困难?根据题意,学生很快列式:28÷7在列竖式计算式,学生发现了商是1余12,这时李老师发问余数是12怎么办?引导学生懂得把12个1变为120个十分之一,120里有几个16?商应写在哪一位上?还有余数怎么办呢?引导学生发现继续添0接着除。
本节课的新授还有一个知识点是在例3,王老师在讲例三时没有花费太多的时间,主要重点是在于让学生发现:整数部分小于除数,不够除,用0来占位,继续除。
在新授的小数除法的两种情况后,王老师总结学生回忆,当我们除到被除数的末尾还有余数怎么办?因为两种情况要牢记,遇到这样的情况就要对号入座。那我们怎么オ能知道我们的计算结果是正确的呢?学生异口同声地回答:验算。
老师要在日常训练学生的过程中使学生养成检查的习惯,通过验算才能知道你的计算是否正确,这一习惯要贯穿于小数除法学习始终。最后在新授结束练习现固,通过课后做一做的题让学生在学习新知识之后趁热打铁加深方法记忆,这有利于学生之后更加松地应对类似提醒,轻松学数学。
整数的和的教学反思篇2
本课的教学内容主要是引导学生探索除数是整数的小数除法的计算方法。它的重点让学生掌握小数除以整数的计算方法,难点是理解商的小数点为什么与被除数的小数点对齐的道理。
传统的计算教学枯燥往往是练习时要求的单一化造成的,严重影响了学生的学习积极性,如何使学生在轻松、愉悦的氛围中生成一定的计算能力呢?
让练习生活化:借解决生活问题来巩固计算,让计算教学不再单纯为了计算而计算,而要把它和课程标准中所倡导的生活实际、情感态度等结合起来,避免计算的单一性、枯燥性。
让练习层次化:第一层次的练习是:商的整数部分不是0的小数出发练习,并引出验算。第二层次的练习是:巩固验算,并引出商的整数部分是0的小数除法,让学生在交流中理解:商的整数部分为什么是0?第三层次的练习是综合性的练习。
一次研究教材、备课、试课的经历,对计算教学有了全新的认识:用心备好一节计算课,让孩子经历探讨算法和算理的过程,比起让孩子机械练习很多题更有利于计算教学开展。
整数的和的教学反思篇3
本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量关系列出求吃每人吃1/2 个、1/3个、1/4个,可以分给几人的算式,然后通过观察、操作探索出一个数除以几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。 学生学习整数除以分数后,部分中下生出现了这样的问题:
(1)把被除数的整数写成的倒数;
(2)把被除数的整数和除数的分数都写成了倒数。严重受到负迁移影响。在教学中如何克服呢?首先要让学生明确算理:整数除以分数,等于整数乘以这个分数的倒数,实质上是被除数除以除数等于被除数乘以除数的倒数。其次,要加强比较训练:整数除以分数、分数除以整数的题目进行分组练习,以强化加深理解整数除以分数的算理。
整数的和的教学反思篇4
我上了《小数乘整数》这节课。课一开始我出示书中的情景图让学生仔细观察,再说说从图中你获得了哪些信息。目的是想通过生活情境的引入调动学生的学习兴趣,从而渗透数学来源于生活,应用于生活。为下面学生自主探究计算方法提供条件。
本节课是小数和整数相乘的第一课时,主要目标就是让学生掌握小数和整数相乘的方法并熟练运用之解决一些实际问题。学生的知识准备是整数和整数相乘的方法及小数的意义.教材安排了例1,通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:
1、尊重学生已有知识,让学生根据经验计算小数乘整数,并且想办法验证自己的计算是正确的来理解算理。通过课前了解学生,我发现大部分学生已会计算,因此,在教学例1时,让学生理解了小数乘整数的意义后,直接问学生:这是一道小数乘整数的题目,你会计算吗?那结果是多少呢?你是怎样算出来的?把这几个问题一下子抛给学生,学生非常活跃,很快就口算出了0.8×3=2.4。
2、突出竖式的书写格式
有了前面对算理的理解,当遇到用竖式计算3.85×59时,部分学生已不再感到困难,但也有不少同学受小数加减法的影响,还是把小数点对齐了。出现了这两种截然不同的写法后,我马上组织学生开展讨论:你们各自说说自己这样列竖式的理由是什么?你们认为有道理吗?哪一种写法符合我们刚才的计算方法?通过这样的讨论和比较,学生很快就明白了竖式的书写格式。
3、突出小数的位数的变化
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是判断小数的位数,在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。
在课的结尾还安排得了智慧屋,填写( )×( )=4.8,让学生体会积的小数位数和因数的小数位数之间的关系,学生想了很多,但时间关系,没有能发现所填算式之间的联系。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,这节课学生是真正课堂的主人。但计算课不是一味的算,要明白算理”需要“悟”。这方面做得不够好,如用不同的方法来说明自己的计算的有道理,如 0.8元×3就是8角×3,8角×3=24角,就是2.4元;或 0.8是8个0.1,8个0.1×3=24个0.1,24个0.1就是2.4,所以0.8×3=2.4;这样所有的学生都知道计算小数乘整数可以看成整数乘整数来计算,而且理解了算理,知道了为什么可以这样算从感性的认识上升到了理性的高度。因此,在注重计算方法的掌握,计算技能的提高的同时,更要强调对算理的理解和感悟。
整数的和的教学反思篇5
小数除法是学生在五年级才刚接触的计算方法,在此之前,学生刚刚学习了小数乘整数,但是小数的除法从难度上来讲比小数乘法高很多,尤其是在算法方面。因此在本课的教学中,我把重点放在了教学算理上,以理解算理加强算法掌握。
我班上的孩子理解能力不是很好,但是知识的迁移能力比较好,所以在教学中我主要采取了两种教学方法,一是“迁移法”,二是“比较法”。我没有采取直接讲解计算方法,而是从复习整数除法的算理开始。
1、首先出了一道96÷3=的题目让学生列竖式计算,并说说每一步是怎么想的。
2、接下来又出了一道题目让学生完成96.3是由()个(),()个(),和()个()什么想成的。
3、最后,让学生想一想,96.3除以3可以怎么想,怎么算。
这三个复习步骤的目的都只有一个,为学生的学习迁移做准备,有了这样一个铺垫过程,接下来学生在完成例题中的第一个问题中,经过思考,再加上我的适当点拔,掌握得相当好。
但这只是一个开始,接下来的两个问题分别是两种不同类型的小数除法计算题,为了让学生加深理解与巩固,我让学生通过不断地讨论逐步解决列竖式中出现的不同问题,同时进行不同类型的比较,加深了学生的理解。
从学生的掌握情况来看还算比较成功。但仍有不足之处,比如,在什么情况下补0,学生掌握得仍然不够,原因是我例题与课堂练一练中,只出现了在余数中补0的题型,未涉及到在被除数中补0的情况,所以课堂中没有进行细致的讲解,导致学生未掌握好。另外,我在课堂教学中只强调了商的小数点与被除数的小数点对齐,仍有个别学生,在列竖式计算过程中,除了在商中点上小数点,也在积中点上了小数点。
整数的和的教学反思篇6
我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为x,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(ab为⊙o的直径,c为⊙o上的一点,ad和过c点的切线互相垂直,垂足为d。求证:ac平分∠dab)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, a学生的答案是“9”,老师一看:错了!于是马上请b同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2-2,2-2的意义;
(2)请辨析下列各式:
① a2+a2=a4 ②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3+2 =-a5
④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2
解后笔者便引导学生进行反思小结.
(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。
数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。
整数的和的教学反思篇7
“分数乘整数”在练习中,50%的学生喜欢用分数加法的计算方法来做分数乘法。学生利用式题,不但总结出了分数乘整数的计算方法,而且知道了算理(也就是分数乘整数的意义),真正做到了算理与算法相结合。
基于这两者天壤之别,笔者有了深深的感触,上述两个案例让我想到一个相同的问题,就是我们常说的备课之先“备学生”到底备到什么程度?对于学生的知识前测,教师心中有多大的把握?没有对学情准确的侦察”,便绝对不会”打赢”有效教学乃至高效教学这一胜仗。很多教师在备学生的时候,是借用别人的眼光来估计自己的学生,看教参上是怎么说的。教参说这时的学生应该具有什么样的知识经验,教师便坚信自己的学生也定是如此了。没有或者很少考虑到虽然是同一个年龄段的孩子,但还有诸多不同的因素:也许你的学生是后进的,他的基础没你想象的那么牢固;也许他是绝顶聪明的,学习进度已经超过好多课业了。
如上述案例中,关注学生转化的思想就是本课时教学的重中之重.数学知识有着本身固有的结构体系,往往是新知孕伏于旧知,旧知识点是新知识点的生长点,数学教学如何让知识体系由点到线,线到面,使知识结构“见木又见林”是十分必要的。案例1从整数乘法迁移到分数乘整数,想法是可取的,但整数乘法的意义在二上年级就已经出现,而且教材中没有出现整数乘法的抽象表达方式(即整数乘法表示求几个相同加数的和),对于五下年级的学生来说,遗忘程度可想而知。而案例2中,以五上年级的分数加法为基础,让学生自由探索,效果是非常明显的。转化是需要条件的,只要“跳一跳”,就能摘到“桃子”,学生才会去尝试。
今天这节课的算理看似简单,其实理解还是有困难的.根据学生的认知心理,在遇到一个陌生的问题,如”1/5×3=?”时,学生对算法的兴趣远远胜于算理.因为算法可以直接得到结果。一旦知道算法,多数学生会对算理失去兴趣。甚至为了考试成绩去死记硬背算理,算法与算理完全脱离。那么我们实际上不是教数学,而是在教一门计算程序:不是在培养研究者,而是在训练操作工。这与”学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的思想方法和必要的应用技能”相违背的。
数学思想方法内容十分丰富,学生一接触到数学知识,就联系上许多数学思想方法。寓理于算的思想就是小学数学中的基本思想方法。在教学时,把重点放在让学生充分体验由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和对算法的切实把握。小学是打基础的教育,有了算理的支撑,算法才会多样化,课堂才会更开放。
课标中,原来讲“双基”,现在变成“四基”,多了基本思想、基本活动经验,笔者认为,只有具备了基本思想、基本活动经验,才能在思维上促进基本知识、基本技能的发展。不但教给学生一个表层的知识,更要给学生思维的方法与思想。