人教版小学六年级数学上册教案参考7篇
我们要根据教案中的指引进行教学活动,教案应当引导学生参与课堂互动,促进合作学习,85报告网小编今天就为您带来了人教版小学六年级数学上册教案参考7篇,相信一定会对你有所帮助。
人教版小学六年级数学上册教案篇1
教学内容:
义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。
教材简析:
教材在学生已经掌握了求一个数的'几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。
教学目标:
1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。
2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。
3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。
教学过程:
一、创设情境,谈话导入。
谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?
[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。
二、自主探究,获取新知。
1.课件出示教科书73页情境
谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?
(1)北京故宫的占地面积大约是多少公顷?
(2)我国的世界文化遗产和自然遗产一共有多少处?
(3)我国的世界文化遗产比自然遗产多多少处?………
(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?
2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?
[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。
3.选择你喜欢的方法试着独立解决这一问题好吗?
4.学生汇报交流。
让学生到前面展示不同的方法,分别说说自己的解题思路。
(1)272×1/4=68(公顷) 68+4=72(公顷)
(2)272×1/4+4
=68+4
=72(公顷)
学生在多次交流解题步骤中,教师板书数量关系
天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积
并展示学生画的线段图。让学生分析线段图。
[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。
5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?
学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)
全班交流,展示做题方法。
(1)30×7/10+30×2/15 (2)30×(7/10+2/15)
=21+4 =30×25/30
=25(处) =25(处)
6.让学生展示线段图的画法,说清解题思路。
7.点题并板书:分数应用题。
8.单看这两个算式的计算,你能想到什么运算律?有什么启发?
9.小结:乘法的分配律在分数中同样适用。
[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。
三、巩固练习,加深理解。
独立完成(第75页第2、3题。)
指生回答,并说出解题思路。
(重点说出数量关系。)
[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。
四、回归实践,拓展运用。
课件再次出示本课信息窗情境图。
谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?
现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。
课本76页第9题。学生读题,指生列式。
[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。
五、谈收获。
这节课你有什么收获?
人教版小学六年级数学上册教案篇2
教学目标:
1、认识圆,知道圆的各部分名称;
2、掌握圆的特征,理解和掌握在同一个圆里半径与直径的关系
3、学会用工具画圆;
4、培养学生的观察能力,动手能力以及抽象概括能力。使学生初步学会应用所学知识解决简单的实际问题;
5、让学生喜欢上美丽的圆,激发探索圆的特征的兴趣。
重点难点:
理解和掌握圆的特征。
教学准备:
课件
教学过程:
一、课前活动
同学们,上课之前我们先轻松一下做一做课间操怎样?起立
第一节:甩甩你的手臂(从前往后再换个方向)
第二节:转转你的脑袋
第三节:原地转身
二、导入新课
1、师:上课前的运动操你们发现了什么?(在做圆周运动)
2、师:刚才发现有的同学手臂转得不太像圆,什么办法转得更像圆呢?(手直、肩不动)
3、师:我们在运动中可以产生圆,在生活中也有许多的圆,大家看:欣赏圆的图片。
4、揭题:圆的认识
5、师:我们看在这餐桌中看到了有几个圆?
这中间有着许多的数学知识,相信吗?
三、动手操作
(一)师:下面我们就做一做这个餐桌
[媒体]做一做:同桌合作,每人在白纸上画一个圆,然后剪下组合成一张圆桌模型。
(二)师:下面我们交流一下是怎么做的?
[第一步]我们第一步是画圆,你是怎么画的?
1、说说你是怎么用圆规画圆?
2、师:老师也在黑板画一个圆(边画边说)
把圆规的两脚分开,定好两脚间距离(半径)
把有针尖的一只脚固定在一点(圆心)上
把装有铅笔的一只脚旋转一周,就画出一个圆
3、老师的圆画得怎样?画圆的时候要注意什么?(针尖不动、两脚距离固定)
4、你们画的两个圆的大小为什么不一样?(两脚的距离不同)
[第二步]我们是把画好的圆剪下来,问:剪时与我们以前的剪正方形、三角形的时候有什么不同?
师:圆呢?(弯的)弯的在数学上我们叫做曲线,所以圆是由曲线围成的与以前所学习的由线段围成的平面图形有很大的区别。
[第三步]
剪下的圆怎么组合起来呢?这2个针孔从哪里来?
师:针孔的这一点,我们叫做这个圆的圆心也可以用字母“o”表示。
师:还有什么办法找到圆心呢?(折)你们先拆下来试一试。(生动手操作)
师:说说你是怎么折的?
可能: ①生:对折再对折,交点就是圆心师:还可以怎么折
②对折、展开、再对折、再展??
师:我们再看这里有几条折痕?而且它们都经过(圆心)像这样的折痕叫这个圆的直径字母d表示(画在黑板上)。
师:圆里还有什么?(半径)你折的圆里有吗?指一指(画在黑板上)这就是半径。
师:什么是直径、半径,自学课本p80 读一读
师:说一说什么是直径?解释圆上、圆外、圆内。
我们一起指指,说说什么是半径?
[媒体]连结圆心和圆上一点,是半径吗?半径也有几条?为什么?[板书]
你们也画一条直径和半径。
仔细观察,你还发现了什么?
①一条直径=两条直径。
师:还可以怎么说?你是怎么知道?用字母可以怎么表示呢?
②所有的直径、半径都相等。
师:你们认为呢?可以用什么方法证明?(量一量)你量一量。
你量的是什么?量的结果呢?你的结论呢?
师:大家观察得很仔细也很会动脑筋,现在老师有个问题不知可以?所有的直径长度都相等?(在同一个圆里)还可以呢?(相等的圆)你认为还有哪些结论也需要这个前提?
[板书]:在同圆或等圆中
三、应用
师:所以我们今后在考虑问题的时候还得想得仔细、周详,对吗?下面我们来看一组填空
1、[媒体]填一填
2、[媒体]再请你辩一辩:下面各句话对吗?
(1)两端都在圆上的线段叫直径
(2)所有的半径都相等
(3)圆是由曲线围成的封闭图形
四、画圆
师:回答得不错,现在老师要提一个新的要求,能接受吗?
请你画一个半径为2厘米的圆
师:想想半径为2厘米该怎么画呢?可以商量一下再画。(生画)
师:说说你是怎么画的?(两脚间的距离为2厘米,再定住,再画)
简单地说你是怎么确定半径为2厘米的?
如果画半径为3厘米的圆呢?
画一个直径为8厘米的圆呢?
你发现了什么联系?(半径=圆规两脚之间的距离)
圆的大小是由什么决定的?位置呢?
画一个直径为1米的圆
(等一会儿)
师:为什么不画?(圆规太小)想有什么办法呢?(钉子、绳子)绳子多长?(50厘米)为什么?我们下课试一试好吗?
五、总结
师:今天我们学习了圆的认识,从圆桌到圆的各种知识还有什么知识值得我们问一问有吗?
师:这些都是我们以后要学习的,老师还有一个问题:谁的家里用的是西餐桌?有什么感觉?相对来说,圆桌呢?
人教版小学六年级数学上册教案篇3
一、教学内容
运用比解决问题。(教材第54页例2)
二、教学目标
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
3、掌握按比分配问题的结构特点及解题方法,发展分析、概括能力。
三、重点难点
重点:理解并掌握按比分配问题的特点和解题方法。
难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
教学过程:
一、复习引入
1、师:比的意义是什么?
引导学生回顾比是什么。
2、一盒糖果有50颗,平均分给甲、乙两人,甲、乙两人各得多少颗糖果?他们所得糖果数的比是多少?(课件出示题目)
点名学生回答,回顾平均分的特点。
3、引出新课。
师:这是一道平均分的问题,生活中,很多问题运用到了平均分,但有时为了分配合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比分配,就是我们今天要学习的比的应用。(板书课题:比的应用)
二、学习新课
教学教材第54页例2。
人教版小学六年级数学上册教案篇4
设计说明
波利亚提出:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”亲身经历以探究为主的学习活动是学生学习数学的主要途径之一,《数学课程标准》中明确指出“探究学习是体验学习过程的一种重要学习方式”,这意味着教材是学生进行探究活动的重要素材。
本教学设计从六年级学生的生理、心理发展水平及学生的知识经验水平出发,为学生创造一个宽松和谐的情境,让学生通过一系列的活动提出问题、探究计算方法、对比优劣,用语言表达自己的收获,培养学生学习数学的能力。
1.把新知识转化为旧知识,完成知识的自我建构。
引导学生借助已有的经验去获取知识,这是最高的教学技巧。本节课通过学生自主探究、合作交流等方式,充分利用了以前学习的知识,根据数据的具体特点,学生借助转化思想把分数与小数进行互化和计算。在这个过程中,学生完成了知识的自我建构,同时也加深了学生对算法灵活性的理解与掌握。
2.在对比中完成方法优化。
算法多样化有利于学生发散思维的训练,但是在实际教学中,我们不能一味地发散思维而忽视学生思维优化的训练。在学生多种算法的对比中,引导学生发现最优算法,从而让学生明白:在计算小数乘分数的时候要根据数据的特点灵活选择算法。
课前准备
教师准备ppt课件学情检测卡
教学过程
⊙复习旧知,引入新课
1.计算。
15×=×15=×=
2.引入新课。
师:上面的题你会计算吗?它们各是什么类型的分数乘法?你能说一说是如何计算的吗?
(学生回答)
师:你们说得太好了!老师为你们知道的这么多而感到骄傲!今天我们就来学习一种新的运算。
(板书课题:小数乘分数)
设计意图:通过复习分数乘整数、分数乘分数的计算方法,使学生回顾已学的分数乘法的计算方法,为知识的迁移做好准备。
⊙讨论交流,探究新知
1.创设情境,获取信息。
(1)课件出示教材8页例5情境图(不含问题),组织学生交流图中的信息。(学生先在小组内交流,然后汇报)
(2)学生自由提出问题,小组交流后汇报。
(松鼠欢欢的尾巴有多长?松鼠乐乐的尾巴有多长?)
2.理解题意,列出算式。
(1)组织学生理解的意义。
师:同桌之间交流一下对题中的和问题的理解。
(交流汇报:尾巴的长度是身体长度的,求尾巴的长度,就是求身体长度的是多少)
(2)列出算式。
师:根据刚才的理解,你能用算式表示出这两个问题吗?
生1:求松鼠欢欢尾巴的长度,就是求2.1的是多少,可以用2.1×表示。
生2:求松鼠乐乐尾巴的长度,就是求2.4的是多少,可以用2.4×表示。
3.探究计算方法。
(1)探究2.1×的计算方法。
师:大家观察一下,这道题与我们前面学过的分数乘法有什么不同?(一个因数是小数,另一个因数是分数)
师:那么应该怎样计算呢?请大家在小组内讨论一下,然后汇报。
人教版小学六年级数学上册教案篇5
学情分析
了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
学习目标
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
导学策略
练习、反思、总结。
教学准备
小黑板
教师活动
学生活动
一、基本训练:
男女职工人数比是5∶4根据这句话你想到了什么?
二、按比例分配练习:
(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7这两种拖拉机各有多少台?
(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土,配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?
(三)一种药水是把药粉和水按照1∶100的比例配成的,要配成这种药水4040千克,需要药粉多少千克?
(四)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5,这个三角形三条边各是多少厘米?
1.还是按比例分配问题吗?
2.如果是四个数的连比你还会解答吗?
三、判断
一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
7+3=1020=14(厘米)20=6(厘米)【错,要分的不是20厘米】
四、思考:平均分是不是按比例分配的应用题?按照几比几分配的
五、课堂练习:《伴你成长》
人教版小学六年级数学上册教案篇6
教学目标:
1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、培养学生大胆猜测,勇于实践的思维品质。
教学重点:
会进行分数的混合运算,运用运算定律进行简便计算。
教学难点:
灵活运用运算定律进行简便计算。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1、运算定律。
我们在四年级时学习过乘法的运算定律,同学们还记得吗?
(学生回答,教师板书运算定律)
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
2、这些运算定律有什么用处?你能举例说明吗?
25×7×4 0.36×101
(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)
二、自主探究(自主学习,探讨问题)
1、引入
同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。
(板书课题:整数乘法的运算定律能否推广到分数乘法)
2、推导运算定律是否适用于分数。
(1)学生发表对课题的见解。
(2)验证
有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)
3、教学例5.
(1)出示: ,学生小组合作独立解答。
4、教学例6.
(1)出示: ,学生小组合作独立计算。
(2)小组汇报学习成果,说一说你们组应用了什么运算定律。
5、小结
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。
三、拓展总结(应用拓展,盘点收获)
1、完成练习三的第6题。
学生说一说应用了什么运算定律。
2、完成课本第10页的“做一做”题目。
其中第2题引导学生讨论解题思路,把87改成“86+1”应用乘法分配律计算比较简便。
3、总结
这节课你有什么收获?
人教版小学六年级数学上册教案篇7
设计说明
1.突出问题意识和探究意识的培养。
爱因斯坦曾说:“提出一个问题往往比解决一个问题更为重要,因为解决一个问题也许只是一个数学上或实验上的技巧问题。而提出新的问题、新的可能性,从新的角度看旧问题,却需要创造性的想象力。”本设计在引导学生自主解决例5的问题时,充分尊重学生的思考过程,也许有的学生认为商品3月份的价格未知,无法解决,也许有的学生会直接根据“降20%和再涨20%”的信息得出价格不变的结论。不管是哪种想法,都要引导学生按照既有思路进一步探究,进而使学生想到用设数法来解题。这样设计,有利于培养学生的数学思考力,提升学生发现问题、提出问题、分析问题和解决问题的能力。
2.体现以学生为主体的原则。
?数学课程标准》中强调:让学生经历数学学习过程与获得数学结论同样重要。因此,在教学中让学生通过自主探究,经历思考、猜想、验证等活动对于发展学生的数学能力有着重要的作用。本设计在探究新知的过程中,每个环节都立足以学生为主体,通过小组合作、讨论、交流等活动,找到解决问题的方法,体现以学生为主体的原则。
课前准备
教师准备,ppt课件,学情检测卡
教学过程
⊙复习导入
1.说出下面各题中表示单位“1”的量,并说说另外一个量怎样表示。
(1)男生人数是女生人数的80%。
(2)香蕉比苹果多20%。
(3)女工人数占全厂人数的45%。
2.某种商品,3月的价格是100元,4月的价格比3月降了20%,这种商品4月的价格是多少?
(1)引导学生找出表示单位“1”的量。
(2)明确题中的数量关系:4月的价格=3月的价格-3月的价格×降低的20%。
(3)引导学生列式计算。
100-100×20%
=100-20
=80(元)
3.某种商品,4月的价格是80元,5月的价格比4月涨了20%,这种商品5月的价格是多少?
(1)引导学生结合复习题2的思路来解答。
(2)列式计算。
80+80×20%
=80+16
=96(元)
4.导入:这节课我们继续学习如何利用百分数的知识解决生活中的实际问题。(板书课题)
设计意图:习题层层递进,对所学的“求比一个数多(或少)百分之几的数是多少”的问题进行回顾,使学生明确这类问题的解题思路和方法,为探究新知打下良好的基础。
⊙探究新知
过渡:如果我们把复习题2、3中的两个量的倍比关系合并在一起,会是什么样的呢?
1.课件出示教材90页例5。
2.引导学生读题,思考。
(1)题中一共有几个量?
(2)找出已知条件和所求问题。
3.分析题意,探究解题方法。
(1)提问:你能直接说出5月的价格和3月的价格相比是涨了还是降了吗?
(不能)
(2)教师启发引导。
①在这两个已知条件中,表示单位“1”的量是相同的吗?
学生找出关键句分析后明确“4月的价格比3月降了20%”中表示单位“1”的量是3月的价格;“5月的价格比4月又涨了20%”中表示单位“1”的量是4月的价格。
②想一想,题中存在几组数量关系,分别是什么?
学生小组讨论后,交流汇报题中存在的数量关系。
[4月的价格=3月的价格×(1-20%);5月的价格=4月的价格×(1+20%)]