九的排列蒙氏教案6篇

时间:2023-12-07 11:02:10 分类:工作报告

优秀的教案需要注重课程的持续改进,教案是教育计划的关键组成部分,有助于实现课程目标,85报告网小编今天就为您带来了九的排列蒙氏教案6篇,相信一定会对你有所帮助。

九的排列蒙氏教案6篇

九的排列蒙氏教案篇1

一、教学目标

知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

能力目标:经历探索简单事物排列与组合规律的过程,培养学生有顺序地、全面思考问题的意识。

情感价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。

二、教学重难点

教学重点:经历探索简单事物排列与组合规律的过程。突破方法:通过创设情境,自主探究突破重点。教学难点:初步理解简单事物排列与组合的不同。突破方法:通过合作交流、探讨突破难点。

三、教学准备

课件、数字卡片、数位表格

四、教学方法与手段

1.从生活情景出发,结合学生感兴趣的动画故事为学生创设探究学习的情境。

2.采用观察法、操作法、探究法、讲授法、演示法等教学方法,通过让学生动手操作、独立思考和开展小组合作交流活动,完善自己的想法,努力构建学生独特的学习方式。

3.通过灵活、有趣的练习,如:握手、拍照等游戏,提高学生解决问题的能力,同时寻求解决问题的多种办法。

五、教学过程

(一)创设情境,激发兴趣

1.故事导入:灰太狼抓走了美羊羊,为了阻止喜洋洋来救,设置了门锁密码,要想闯关成功,要了解一个知识—搭配,揭示课题。

2.猜一猜第一关的密码是由

1、2两个数字组成的两位数,个位上的数字比十位上的数字大,这个密码可能是多少?

(二)动手操作,探索新知

1.过渡谈话,引出例1灰太狼增加了难度,在第二关设置了超级密码锁,密码是

1、2和3组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?”(课件出示例1)

2.尝试学习,自主探究

(1)引导理清题意:你都知道了什么

(2)指导学法:你有什么办法解决这个问题?

(3)动手操作:分发3张数字卡片,任意选取其中两张摆一摆,组成不同的两位数。鼓励学生动脑,找规律去摆,比一比谁摆的数多而不重复。

3.小组交流,展示成果

(1)小组交流:学生自主摆完后,小组交流讨论,探讨排列的方法。

(2)展示成果:指名上黑板展示。

4.交流摆法,总结规律

①交换位置:有顺序的从这3个数字中选择2个数字,组成两位数,再把位置交换,又组成另外一个两位数

②固定十位:先确定十位,再将个位变动。 ③固定个位:先确定个位,再将十位变动。 小结:以上这些办法很有规律,他们的好处:不重复,不遗漏,有顺序。

5.区分排列和组合

握手游戏:每两个人握一次手,3个人握几次手?

这些与顺序有关的问题,我们叫排列。与顺序无关的问题,我们叫组合。

(三)应用拓展,深化方法

1.任务一:比一比谁最快。

2.任务二:购物小超市,买一个拼音本,可以怎样付钱?

3.任务三:涂颜色(教材97页“做一做”)

学生独立思考,动手完成涂色。

4.任务四:搭配衣服。

5.组词:“读、好、书”一共有几种读法?

(四)总结延伸,畅谈感受

今天这节课有趣吗?同学们在数学广角里学到了什么?你有什么收获?以后在解决这类问题时应注意什么?

(五)课后作业

拍照游戏,3个人站一起拍照有几种站法?4个人呢?

六、板书设计

排列与组合1、2 —— 12 21

1、

2、3 ——12 21 23 32 13 31 12 13 21 23 31 32 21 31 12 32 13 23

九的排列蒙氏教案篇2

【背景】

在日常生活中,有很多需要用排列组合解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。

【教材分析】

“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。

【教学目标】

1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;

2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

【教学重点】

经历探索简单事物排列与组合规律的过程

【教学难点】

初步理解简单事物排列与组合的不同

【教学准备】

多媒体、数字卡片。

【教学方法】

观察法、动手操作法、合作探究法等。

【课前预习】

预习数学书99页,思考以下问题:

1、用1、2两个数字能摆出哪些两位数?

2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。

3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。

【教学准备】

ppt

【教学过程】

……

一、以游戏形式引入新课

师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢?

师:谁告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数)

生:12、21

师:打开密码盒

师:打开了密码锁,进入数学广角乐园。一关一关的进行闯关活动。第一关:1、2、3能摆出哪些两位数?第二关:如果3人见面,每两个人握一次手,一共要握几次手?

(设计意图:不拘泥于教材,创设学生感兴趣的游戏引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)

二、游戏闯关活动对比

师:老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?

结论:摆数与顺序有关,握手与顺序无关。

摆数可以交换位置,而握手交换位置没用。

(设计意图:以相同数量进行对比,为什么数字要比握手多一半呢?引发学生知识冲突从而引发思考,激发学生的求知欲。)

三、应用拓展,深化探究

1、数字宫

师:第三关现在我们去那里玩呢?我们一起看看!

从0、4、6中选择两个数字排成两位数,有几种排法?

总结:为什么和上面发现的结果不一样呢?问题出在谁的身上呢?(0)

为什么?(0不能做一个数的第一位)

2、选择线路

师:同学们,米老鼠带我们欣赏完数学广角,准备回家了,有几条路供它选择?演示:

问题:数学城堡到家里,到底有几种走法呢?

(1)分组讨论。

(2)学生汇报,教师演示。

(3)板书:a——ca——da——eb——cb——db——e

(设计意图:题目层次性强,与生活联系密切。不同的人在数学上得到不同的发展,人人学有价值的数学。)

【反思】

本节课的设计做到了以下几个亮点突破:

1、创设游戏情境,激发学生探究的兴趣。

整课节始终用创设的游戏情境吸引学生主动参与激发积极性。我设计了:门上的锁密码是多少?本节课通过闯关游戏创设“数字排列”中有趣的数字排列,激发了学生解决问题的探究欲望。又如通过创设“握手活动”与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题的兴趣。

2、课堂中始终体现以学生为主体、合作学习。

“自主、探究、合作学习”是新课程改革特别提倡的学习方式。本节课设计时,注意选则合作的时机与形式,让学生合作学习。在教学关键点时,为了使每一位学生都能充分参与,我选择了让学生同桌合作;在解决重难点时,我选择了学生六人小组的合作探究。在学生合作探究之前,都提出明确的问题和要求,让学生知道合作学习解决什么问题。在学生合作探究中,尽量保证了学生合作学习的时间,并深入小组中恰当地给予指导。合作探究后,能够及时、正确的评价,适时激发学生学习的积极性和主动性。

3、让学生在丰富多彩的教学活动中领悟新知。

本课通过组织学生主动参与多种教学活动,充分调动了学生的多种感悟协调合作,既让学生感悟了新知,又体验到了成功,获取了数学知识,真正体现了学生在课堂教学中的主体地位。

九的排列蒙氏教案篇3

求解排列应用题的主要方法:

直接法:

把符合条件的排列数直接列式计算;

优先法:

优先安排特殊元素或特殊位置

捆绑法:

把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列

插空法:

对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中

定序问题除法处理:

对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。

间接法:

正难则反,等价转化的方法。

例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:

(1) 全体排成一行,其中甲只能在中间或者两边位置;

(2) 全体排成一行,其中甲不在最左边,乙不在最右边;

(3) 全体排成一行,其中男生必须排在一起;

(4) 全体排成一行,男生不能排在一起;

(5) 全体排成一行,男、女各不相邻;

(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;

(7) 全体排成一行,甲、乙两人中间必须有3人;

(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。

某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中 ,各有多少种不同的选法?

(1)无任何限制条件;

(2)正、副班长必须入选;

(3)正、副班长只有一人入选;

(4)正、副班长都不入选;

(5)正、副班长至少有一人入选;

(5)正、副班长至多有一人入选;

6本不同的书,按下列要求各有多少种不同的选法:

(1)分给甲、乙、丙三人,每人2本;

(2)分为三份,每份2本;

(3)分为三份,一份1本,一份2本,一份3本;

(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;

(5)分给甲、乙、丙三人,每人至少1本

例2、(1)10个优秀指标分配给6个班级,每个班级至少

一个,共有多少种不同的分配方法?

(2)10个优秀指标分配到1、2、 3三个班,若名

额数不少于班级序号数,共有多少种不同的分配方法?

.(1)四个不同的小球放入四个不同的盒中,一共

有多少种不同的放法?

(2)四个不同的小球放入四个不同的盒中且恰有一个空

盒的放法有多少种?

九的排列蒙氏教案篇4

目标:

1.乐与参加数学活动

2.能发现物体的特征并进行分类排序

3.学会根据物体特征做标记

4.体会数学的生活化,体验数学游戏的乐趣。

5.知道按事物不同的特征进行排序会有不同的结果,初步了解排序的可逆性。

准备:

1.教具:彩色鱼9条(由3种颜色组成,大中小各3条) 鱼缸图片3张,红、黄、蓝三色标签各一份

2.学具:幼儿用彩色鱼,人手9条,形状颜色同教具相同

过程:

一、念儿歌进教室

边念儿歌(附后)边做动作进教室,为下面的活动做铺垫。

二、出示教具(集体活动)

1. 出示彩色鱼,无规律排放

师“今天老师带来了几位小客人来到我们苗9班,小朋友们想知道是谁吗?”

2.引导幼儿发现彩色鱼的特点

“我们来看看这些小鱼好看吗?它们都有些什么颜色?它们的颜色都是一样的吗?我们来看看它们还有什么不同啊?”

三、出示学具(个别活动)

“小鱼们今天遇到一个难题,想请我们聪明的小朋友帮帮它们,好吗?刚刚小鱼们看到我们小朋友进教室的时候排队排的很整齐,它们也想排个队,请小朋友们帮它们也排个队好吗?”

幼儿按照自己的想法为彩色鱼排列,教师巡回指导。活动结束后收学具,放回学具袋并且放回椅子下面。

四、交流小结

师“刚刚我发现有很多的小朋友都用了很多的方法来为我们的小鱼排队,那我想请几位小朋友上来将你的方法排给其他小朋友看看”

请2—3位幼儿示范。

小结:彩色鱼的排列可以是按照从大到小,从小到大,相同颜色放一排,花纹相同的放一排等方法进行不同的序列。

五、学习制作标记

教学反思:

数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。

九的排列蒙氏教案篇5

教学目标:

1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。

2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。

3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。使学生在数学活动中养成与人合作的良好习惯。

教学过程:

一、创设增境,激发兴趣。

师:今天我们要去"数学广角乐园"游玩,你们想去吗?

二、操作探究,学习新知。

<一>组合问题

l、看一看,说一说

师:那我们先在家里挑选穿上漂亮的衣服吧。(课件出示主题图)

师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)

2、想一想,摆一摆

(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?

①学生小组讨论交流,老师参与小组讨论。

②学生汇报

(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。(要求:小组长拿出学具衣服图片、展示板)

①学生小组合作操作摆,教师巡视参与小组活动。

②学生展示作品,介绍搭配方案。

③生生互相评价。

(3)师引导观察:

第一种方案(按上装搭配下装)有几种穿法? (4种)

第二种方案(按下装搭配上装)有几种穿法? (4种)

师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。

<二>排列问题

师:数学广角乐园到了,不过进门之前我们必须找到开门密码。(课件出示课件密码门)

密码是由1、2 、3 组成的两位数.

(1)小组讨论摆出不同的两位数,并记下结果。

(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)

(3)生生相互评价。方法一:每次拿出两张数字卡片能摆出不同的两位数;

方法二:固定十位上的数字,交换个位数字得到不同的两位数;

方法三:固定个位上的数字,交换十位数字得到不同的两位数.

师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.

三、课堂实践,巩固新知。

1、乒乓球赛场次安排。

师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)

(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?

(2)学生独立思考.

(3)指名学生汇报.规

2、路线选择。(课件展示游玩景点图)

师:我们去公园看看吧。途中要经过游戏乐园。

(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(a,b,c三条)(根据学生的回答课件展示)

从活动乐园到时公园到底有几种不同的走法?

(2)学生独立思索后小组交流 。

(3)全班同学互相交流 。

3、照像活动。

师:我们来到公园,这儿的景色真不错,大家照几张像吧.

师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。

(1)小组活动,老师参与小组活动 。

(2)各小组展示记录方案 。

(3)师生共同评价 。

4、欣赏照片.

师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)

四、总结

今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?

九的排列蒙氏教案篇6

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.

从n个不同元素中任取(≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取(≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.

公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.

排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.

在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.

在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.

三、教法建议

①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

ab,ac,ba,bc,ca,cb,

其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.

②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.

从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.

在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.

在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.

要特别注意,不加特殊说明,本章不研究重复排列问题.

③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.

导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.

公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.

④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.

⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.

教学设计示例

排列

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

教学重点难点

重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。

难点是解有关排列的应用题。

教学过程设计

一、 复习引入

上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):

1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.

(1)从中任取1本,有多少种取法?

(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?

2.某农场为了考察三个外地优良品种a,b,c,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?

找一同学谈解答并说明怎样思考的的过程

第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.

第2题说,共有a,b,c三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.

二、 讲授新课

学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:

1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?

由学生设计好方案并回答.

(1)用加法原理设计方案.

首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.

(2)用乘法原理设计方案.

首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.

根据以上分析由学生(板演)写出所有种飞机票

再看一个实例.

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?

找学生谈自己对这个问题的想法.

事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.

首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;

其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.

根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).

根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)

第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.

由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.

根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).

请板演的学生谈谈怎样想的?

第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.

第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.

第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.

根据乘法原理,所以共有4×3×2=24种.

下面由教师提问,学生回答下列问题

(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?

都是从一些研究的对象之中取出某些研究的对象.

(2)取出的这些研究对象又做些什么?

实质上按着顺序排成一排,交换不同的位置就是不同的情况.

(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.

上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.

第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.

第三个问题呢?

从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.

给出排列定义

请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列.

下面由教师提问,学生回答下列问题

(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?

从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.

如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.

再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.

(2)还需要搞清楚一个问题,“一个排列”是不是一个数?

生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.

三、 课堂练习

大家思考,下面的排列问题怎样解?

有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)

分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.

解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.

第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.

第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.

第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:

所以,共有9种放法.

四、作业

课本:p232练习1,2,3,4,5,6,7.

《九的排列蒙氏教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭